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1. Outline of the research.
In recent years the optical properties of particles near or on a plane surface

have been the subject of several papers that deal with both the theoretical and
the experimental aspects of the problem. This interest from the scientific com-
munity can be easily understood because revealing through optical measure-
ments the presence of particles on a surface that is expected to be clean is of
great importance both for industry and fc nedicine.

Among the theoretical techniques thr o been proposed to deal with the
problem the method of the images prov the most fruitful when the
plane surface is a perfectly reflecting one, a ,if;.m that is met to a high de-
gree of accuracy by many polished metallic surf -s. According to the theory of
the images the problem of scattering from a particle in the vicinity of a perfectly
reflecting plane surface is quite equivalent to the problem of the dependent •
scattering from the compound object that is composed by the actual particle
and by its mirror image when excited by the superposition of the fields that
come from the actual source and from its image. Of course, the method of the
images is advantageous provided one is able to solve, without undue computa-
tional effort, the problem of scattering from the compound scatterer. In fact, the
lack of an efficient technique to deal with this problem forced several research-
ers to solve the problem for limiting cases only, e. g. normal incidence, or
through approximations, such as the assumption of smallness of the scattering
particle.

2. Method of attack.
The method that we used for our research combines the method of the imag-

es with the technique that we developed several years ago to calculate the scat-
tering properties of aggregated spheres. When one assumes that the actual par-
ticle is or can be modelled as a cluster of spherical scatterers, the method of the
images requires to deal with the properties of a cluster that contains twice as
many spheres as the actual object. The fact that the exciting field is the superpo-
sition of two plane waves does not introduce any additional difficulty. Further-
more, the presence of the reflecting surface does not prevent us from perform-
ing analytical averages over the orientations of the scattering particles. 0
Therefore our approach is suitable to calculate the scattering pattern not only
from single spheres and from single aggregates of spheres but also from a dis-
persion of identical aggregates whose orientations differ only for a rotation
around an axis orthogonal to the reflecting surface.

As our approach does not imply any approximation nor limitation both on
the direction of incidence and of observation and on the polarization both of the
incident and of the scattered field, we were able to calculate the full scattering
pattern for a few representative examples of aggregates that are meant to simu-



late the presence of anisotropic particles on the reflecting surface. Moreover,
our approach applies also to hemispheres and to aggregated hemispheres with
their flat face lying on the surface; this suggests the possibility of simulating the
properties of an arbitrarily rough metallic surface.

3. Sketch of the results.
Although both the theory and the main results of our research are fully ex- •

plained in the enclosed paper, that has been accepted for publication in JOSA
A, it may be useful to summarize here the most relevant findings.

For a dispersion of model anisotropic particles on the surface our results
show that the anisotropy is not masked by the random orientation of the parti-
cles; the anisotropy can be revealed by observing the polarized light that propa-
gates along the reflecting surface at right angles to the plane of incidence. •

The need to deal with the compound scatterer (actual particle and its image)
persists until the distance between the actual particle and the surface does not
exceed 5d, where d is the linear size of the actual particle (for spheres, d coin-
cides with the diameter).

The approximations that are based on the assumption of smallness of the 0
scattering particles may present severe drawbacks. In fact, although a small
particle in the vicinity of the surface is equivalent to the cluster of two identical
small particles, the cluster itself may be not small enough to grant the applica-
bility of the Rayleigh approximation.
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In the framework of the image theory the full scattering pattern from model anisotropic particles
on a perfectly reflecting surface is calculated for au arbitrary direction of the incident field. The
particles on the surface are modelled either as clusters of spherical scatterers or as clusters of hemi-
spheres whose flat face lies on the reflecting surface. Our approach is based on the expansion of all 0
the fields in terms of spherical multipoles whose transformation properties are used to get a compact
expression for the scattered intensity both from a single particle as a function of its orientat~on and
from a dispersion of radlomly oriented particles. The patterns that were calculated for several model
scatterers show some features that may give useful suggestions on the possible anisotropy of actual
particles on a reflecting surface.

1. Introduction

The exact solution to the problem of electromagnetic scattering from particles near or on a substrate of general
dielectric properties bounded by a plane surface has been worked outt for spheres only."- The literature also reports
approximate solutions both for spheres and for particles of general shape that apply e. g. to objects far from the
surface or to small objects oit the surface itself.'5 6 The need to resort to approximations is not surprising because the
simultaneous presence of the closed surface of the particle and of the open plane surface of the substrate complicates
the boundary condition problem that one has to solve to get the pattern of the scattered radiation. When the plane
surface is perfectly reflecting the image theory allows one to substitute the problem at hand with the equivalent
problem of scattering from the object that is composed by the actual scatterer and by its image,7 but this substi-
tution amounts to an effective simplification only when the dependent scattering from the compound object can be
calculated. Actually, in the case of a perfectly reflecting surface an exact solution has been worked out for both
spheress'8 and cylinders.9

In this paper we will resort just to the image theory to calctlate the pattern of the scattered radiation from single
model anisotropic particles on or near a perfectly reflecting plane as well as the pattern from a dispersion of identical
model anisotropic particles, with random orientation, that. form a low-density monolayer on or near the surface. The
anisotropic particles will be modelled as clusters of spherical scatterers ott account. that., in the framework of the
image theory, the scattering from a single sphere near a perfectly reflecting surface is equivalent to the dependent •
scattering from the binary cluster that is composed of the actual sphere and of its image, provided the exciting field
is the superposition of the fields that come from the acttal source and from its image.s Thus, if the object in front
of the surface is a cluster of spheres, one has to deal with the scattering pattern from a cluster that has twice the
spheres than the actual chlster.

The scattering from a chlster of spheres can he calcilated with a high degree of precision and without undue
computational effort, through the technique that, we devised a few years ago.' 0 We based our approach on the
expansion of the incident, of t le, scattered and of tle internal field in tertns of sphterical mult-ipolest t-14 and on tlte
imposition of Ihe approltriate bomidary cottditions at. thlie surface of each one of tie spheres in tlte cluster. Tite



final equations are affected by ito aplproxinat.iont and, in fact., proved to yidd results that. are in excellent agreement
with the available experimental dat.a for single clusters.1 ,16 A noticeable feature of our formalism is that, through
tile use of the transformation properties of the spherical uIultiipoles tinder rotation, the scattering amplitude or any
cluster turns out to be factorized into a part that. depends only on the structure and on the orientation of the cluster
and into another part. that depends only on the polarization and on the direction both of the incident and of the
scattered field."t Oin account of this separation the pattern of the scattered radiation from a cluster of arbitrary
orientation can be calculated, withoutt undue computational effort, for whatever polarization and direction both of
incidence and of observation. Our formalism is also suitable to calculate the scattering pattern from an assembly
of identical clusters with random orientation, provided their number density is so low that the multiple scattering
processes among different clusters call be neglected. The scattering amplitude depends, indeed, on the orientation
of the cluster only through the D-matrices, i. e. through the irreducible representations of the three-dimensional
rotation group;"' therefore, once the scattering amplitude is known for a single orientation, it is also immediately
known for any other orientation. Using this dependence of the scattering amplitude on the orientation, the average
that must be calculated to get. the scattering pattern from the whole assembly can be performed analytically in many
cases of interest; even wheln the average must he perfornmed nimvrically the cot nptit ,atioii requires, however, little

effort.
In this paper we will use jusl the fornialism that. we outlined above1, t

17 t.o calcuilate the scattered int.ensity from a
dispersion of identical clusters on the reflecting surface; our only assumption is that the actual objects together with
their images are still identical to each other and that. the orientations of any two clusters differ for a rotation around
an axis orthogonal to the reflect ing surface. We stress that our procedure does not imply any limitation either oil the
polarization or on the direction bot h of the incident and of the observed wave. The same procedure is also applicable
to one or more hemispheres whose flat face lies on the surface as these objects, together with their images, form
either a single sphere or a cluster of spheres. In this paper we will also deal with the scattering pattern from these
objects in order to gain some information onl their properties because, in our opinion, a dispersion of hemispheres on
a plane surface could be an useful model to simulate the properties of e. g. a rough metallic surface.

2. Theory

A. The incident field and the reflected field

Let us assume that the half.space < 0 is filled with a perfectly conducting material, such as a metal: the bounding
surface z = 0 is thus perfectly reflectinig. We assumne that the incident field is the plane wave

E` = E061 exp(iki, r)

that propagates in the halfspace : > 0 of (real) refractive index n with (unit) polarization vector 61 and wavevector
ki = nkit; as usual, k = w/c and the time dependence exp(-iwi) is omitted throughout. The multipole expansion
of the incident field is 0

E" ,, , r=, (I E)
pim

where we define the spherical mutltipoles

J(k,r) = jl(ki')X,..), M it-(k, r) = x X(J11. r)

whose parity is given by the superscript p = 1, 2 that distinguishes the magnetic multipoles (p = 1) from the electric
ones (p = 2); the Xl,,,'s are vect-or spherical harmonics.14 In turn the multipole amplitudes 111 are defined as

Jim) - Wm )

where
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The reflected field coincidcs with the field that comes from the mirror image of the source and has the expansion

EI= EoZ E ,,VJ, ((nk, r).
plIn

O

Of course, the condition of reflection implies that the polarizationis of E'"c and EreJ cannot be mutually independent;
therefore the relation between them will be presently established. Since the plane z = 0 is perfectly reflecting, there
is no transmitted field: thus E''c awd EreI must have the same amplitude as well as the same phase on that plane.
Therefore, the boundary conditions at. the reflecting sur'face read

(0 + 46) x fi = 0, (2)

where fi is the unit. normal to the surface. In order to find the explicit. relation between the polarization of the
incident and of the reflected wave it. is convenient. to introduce a basis for the projection of the states of polarization.
For the incident wave we introduce the pair of init, vectors filli, that. lies in the plane of kI1 and of ii and is orthogonal

to kl, and fitj. = kl x fil; for the reflected wave we defiiie the pair fiiRJ and ihR.L that are orthogonal to KR and to

each other with fi111 in the plane of kR and fi. By projecting 6/ and 6n on the respective basis and imposing the
boundary conditions, eq. (2), we get,

eRII = eill, elRI = -et±

when the polarization is linear. For the case of circular polarization we define the bases

t I.T: = 1( 0111=F T i ft), Ii (fRll T ti-±),

and with the same procedure we get

eR_ = el+, el?+ = el-.

Although the field that actually excites the particles is E" = E'"c + E' 4 , the relations above allow us to refer to
the direction of incidence and to the polarization of the incident field only.

B. The scattered field

The field that is scattered by the compound object that includes the actual particle and its mirror image can be
expanded as

EsCa = EoZ- A5,)"'(tnk, r), (3)
pirn

l)(P)' , .e

where the multipole fields Ht,'s are identical to the Jilin 'except for the substitution of the spherical lHankel functions

h~l)(kr) to the spherical Bessel fictions j,(kr). The amplitudes AIM,? are related to the amplitudes of the exciting
field E-rc through the equation

A(P) - EII ,-p') [1V (4)

where 0

4 '(P') W- +l/FI'
E Pm' - It m• I • 'm'"

3
0
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The matrix S, of eleniitis S, S'I$1Ajn11 is the so called transition matrix19 and contains all the structural information
on the aggregate conmposed of the particle and of its ihiiage. The form of eq. (4) is essential to perform the angular
analysis of the scattered radiation, as in this equation the structural information is factorized with respect to the
angular information. Il ot her words, S depends oil the geomel rv, on tile orientation and on the scattering power of
the particle whereas all the information on the direction and on the polarization of the incident wave is contained in
the WE's.

Let us now recall that Ithe particles that. we deal with in this paper together with their image always form a cluster
of spheres; therefore iheir S-nmat.rix can be evahlaled through the technique that we devised several years ago 1.o
describe the scattering properties of aggregated spheres. The conmplete theory has been published elsewhere" so
that, in Appendix A, we report, only the guidelines of our procedure for the calculation of S. This matrix is related
to the matrix ..M`- that. is the inverse of the matrix Ml that expresses the boundary conditions at the surface of
each one of the spheres in terms of multipole fields."' The matrix AA accounts for the fact. that the incident field
on each one of the spheres is the superposition of E"' and of the fields that have already been scattered by all
the other spheres in the aggregate. In other words the field scattered by the whole aggregate is calculated through •
a dependent scattering approach. For an aggregate of N spheres with no particular symmetry the order of MA is
dm = 2NLA,(LA, +2), where Lm is the maximum value of Ithat. must. be retained into the expansions eq. (1) and (3)
to get fairly convergent results for the scattered field. Therefore, A.4 can become rather big thus requiring a long
computer time for its inversion; actually, the calculation of Al - I is responsible for the most part of the calculations
that are needed to get ItIh scattered field. The use of group theory, however, may help t.o reduce the computational
effort th rough the exploitIation of the symmetry properties of the scatterer.-'2 -' In this respect, it is worth recalling
that our compound scalherers (act tial object. and its image) do have at. least. the reflection symmetry with respect to
the plane of the substrate. Furt1hermore, if Ihe compound scatterers have also the cylindrical symmetry around an
axis orthogonal to the surface, the direct, u.se of the machinery of group theory is not necessary, because the choice
of the cylindrical axis as t lie z axis produces an automatic factorization of the Ml matrix with respect to the index
m. In this case the highest. order of the matrices to be inverted is dft = 2NLftj only.

C. The scattered intenisity

The relevant quantity is t lie matrix I,, E , E`11,; the indices ij and 17' refer to the polarization of the scattered
and of the incident field. respecltively. The scaltered field from a particle at. the origin of the frame of reference can
be written as

I = E0• a= Eoelp(?ink3) I

provided r is large, so that.

E4", o

where the f,,q, are the elements of the normalized scattering amplitude' 4 that are known to depend both on the
incident and on the scattered wavevect.or as well as oil the orientation of the particle with respect to a frame of
reference fixed in the laboratory. Of course, the scattering amlplitude that we must consider here is that of the
compound scatterer that is composed by the obiect. in front. of the surface and by its mirror image. The f,1,,, are
related to the elements of t lie Iraisition matrix through the equation'17

1• P) 4ý, (P I")~m [r')' 1t (5)

pin) p',I•'

with

W•im -' "1~2m ,k•.5),

where ýs and lis are the polarization vector and the direction of observation of the scattered field, respectively. If
one has to calculate the scattering patt.eru from a single cluster in the vicinity of the reflecting surface, eq. (5) is



quite efficient as its form shows that, once the S-matrix is known, the scattered intensity can be calculated without
undue computational effort. for any k/ and k,.

When one is interested in the pattern of ihe wcattered radiation from all assembly of identical scatterers in front
of the surface, the distribution of their orientations must be taken into account.. This can be done by associating
to each cluster a local systnem of axes chosen so that. when two clusters are superposed their respective local axes
coincide. As explained elsewhere in full detail,`7 the scattering amplitude of a cluster of known orientation is given
by

I011). UI zO Z"ll) (P) (I")S,,11 11,1D -*( )Sl",", DII O I(6)
Phil pll'm, 11141

where 0 E (a, i3,7) is a shorthand For tihe three Euler angles'' that, characterize the orientation of the local frame

with respect to the laboratory frame. In eq. (6) both "-p, and E are given in1 t.he laboratory frame whereas

the elements of the tranisition matrix, S1 ,11'" are calculated in the local frame and are thus independent of the
orientation of the scatterer; the D's, in turn, are the irreducible representations of the rotation group,'"' i. e. the
matrices that transform the laboratory frame into the local frame. Equation (6) shows that, even when dealing with
an assembly of identical scatterers, we need to calculate the transition matrix only once.

We have now all the ingredients that are necessary t.o calculate the scattered intensity from an assembly of identical
clusters in thle vicinity of the reflecting surface. It. is to be stressed, however, that the applicability of the method of
the images requires that. we consider a monolayer of clusters that. are so arranged that the centers of the corresponding
spheres in different, clusters have the same distance from the surface. A moment's thought will convince the reader
that this condition implies that, all thle compound scatterers that. are composed by the actual objects and by their
respective images are identical to each other and that. the orientations of any two of tdhem differ for a rotation around
an axis that is perpedicnlar to the surface. WVith this in mind we can write the total scattered intensity as

= = 0)12) + (N2 - )(E,,,,(R, 0)E,,,, (R', E')),

where P and V' are particle indexes, N is the number of the particles on the reflecting surface, E~,,,(R, 0) is the
scattered field from a particle at. the position R. with orientation 0, and the brackets denot.e the ensemble average
over both the position and the orientation of the particles. The first term on the right-hand side, the so called self
term, contributes to the scattered intensity for any angle of observation. Even the second term, that is a two-body
term, may become important for nonrandom distributions of the scatterers, but, when they are randomly distributed
upon the surface, it. does cont ribuhe in the direction of reflection only.22 Ultimately, as in this paper we deal just with
monolayers of randomly distributed scatterers, we will outright disregard the two-body term so that I,,, reduces to

S= N (l,7,) = N J I,,(R , 0)w(R.,0)dfRdO, d

where w(R, 0) is the normalized density distribution function with respect to the position of the particles and their
angular orientation. Since we assume that there is no correlation between the position and the orientation of the
scatterers w can be factorized as u,(R, G) = wn.(R)wo(0); furthermore the distance of observation is assumed, as
usual, to be very large with respect to tile size of the reflecting surface, so that we can put R = 0 and write

(lI1,) 70 f ,,(Rf. -))Mn(fI u'o(0)dRdO • f ,nA(R.)dnf Ip,, (O, 0)wE(0) dO

- l Jli(0, 0 n- (0) dIC-)

ont account that

JIVR(R)dR. 1.
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The orientation of any iwo chiises differs only I)y a rotation around an axis that is orthogonal to the surface; thus, we
choose the 2 axis or the local reference frame that we attached to each cluster to coincide with that axis, 0 = 0 = 0,
and the average involves the Euler angle o only. Now,' 2

D(1)ja, 0,0) = exp(-iitu )b,,..,

so that eq. (6) reads

I, 4.. V' V' lV1'"• ,,pin. ''" ex•p(-i,,/,,~)W 1AtY
"4k •qI '- Ip~n) N3.' in' Fqt* 'I'"

pin ) l) .

Then, the total scattered intensity is

7,,,,, , I= L" E

where

=S 1,, _ ., .,~ , ' u , E", 11,m, (8 )
,'1 p'I'

and

2s
I,,, = exp(-inp )n'( )dm,

where in turn

w(a) = u'o(o,,i? = 0, 7 = 0).

Equation (7) gives the scattered intensity for a general orientational distribution of the scatterers, i. e. for a general
w(a). In particular, if u.(a) = 1/2,r, i. e. when the clusters are randomly oriented, 1, = 6,.O; this implies that the
sums in eq. (7) are subject t.o the constraint in - in' - ni'" + il"' = 0.

The average over the orientations is, of' course, not necessary and is actually not performed in two important
cases: when all t he compound scat terers are oriented alike or wihen they have cylindrical symmetry around an axis
perpendicular to the surface. '[ihe latter case occurs when the centers of all the spheres that form a cluster lie on a
straight line that is perpendicular to the surface. However, even in these two special cases our orientational averaging
procedure yields the correct results as we will show presently. When all the clusters are oriented alike, S can be
calculated with respect. to a local reference frame whose axes are parallel to those of the laboratory frame; as a
consequence w(a) = 6(a), where b is the Dirac delta function, and ., = 1, so that eq. (7) becomes

7, N 1Eo 12~~ 1  ,

16700kr 2 n

If the clusters have cylindrical symmetry, the elements s1,7;,1 f do not. vanish for ni' = m' on ly t" and the same holds
true for F,,,,,,m', eq.(8). because we .just. chose the cylindrical axis as the z axis of the local frame; consequently, eq.
(7) simplifies to

7.,, - N F, 2•

16,-r2- - , F.F,, l,,, .. ,
flip11,'

on account that 0 = = 1 according to its definition. Thus even in the above mentioned special cases
our orientation averaging procedure works properly and yields the trivial result that the total scattered intensity
equals N times the intensity that is scattered by an individual particle-23 ' 3 .

6
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3. Results and discuss'ionii

The theory that. we described in Ihe preceding sections has beeti tested against, the results reported by Johnson
for a single sphere near or in contact with the rellcc.itg surface. Actually, we wore able to reproduce with the
highest accuracy the results that Johnson reports iii Figs. 7-10 of his paper.8 However, we are not restricted to

normal incidence so that we are able to calculate the full ipat.teri of the scattered intensit.y at any incidence not
only for a single sphere on the reflecting surface but also for some representative anisotropic model particles. Inl
fact, we perfo,-tled our calculations also for a cluster of two identical and mutually contacting spheres lying on the
surface as well as for clusters of two identical mutually contacting hnemispheres and for linear chains of four identical
hemispheres - the neighbouring hemispheres arc in contact. with each other - with their flat face lying on the
reflecting surface. WVith the exception of the case of a single sphere, almost all the patterns that we report refer to
a dispersion of identical objects whose orientations are ran(lonlly dist.ributed as explained in Subsection 2C. Ihi our
calculations we assiuuied that. the medium that fills the accessible half-space is the vacuum (71 = 1) and that the
wavelength of the incideuut radiation is A = 628.3 nin; the refractive index of both the spheres and the hemispheres
is no = 3 while the radius both of the single sphere and of the hemnispheres that form a binary cluster was chosen to
be b, = 126.0 inl; in tI urU the radiiis both of the spheres .hiat. formi the binary cluster and of the hemispheres that
form the four-hemispheres chain is bh = 100.0 1m. 'T'his choice of the radii is not casual as it makes the total volume
of all the clusters, either of spheres or of hemispheres, equal to the volume of the single sphere. In fact, since we
are mainly interested in the effects of the anisotropy, we found it. convenient., according to our previous experience, 2 4

to investigate objects wiih a different. geometry but containing Ihe same quantity of refractive material. The size
parameter of the single sphere turns out. to be .r., = kb., = 1.26 whereas the size paraiet.er of the spheres that
form the binary chlisiers is .rh = 1kbh = 1.0. As a result., the niaxinlliuuu value of I that. we had to include into the
multipole expansions, cIs. (I) and (3), was L.11 = 8 For the single sphere, Lu, = 9 for the t.wo-hemispheres clusters
and LAI = 10 both for the two-sphlres and the foii r-heil ispheres chlsters in) order to achieve the convergence to four
significant digits: this convergence criterion is, of course, ,more st.rict. that required for all accurate display of our
results. The need to use so large a value of LAI even for the single sphere is due to the fact that our calculations do 0
not actually deal with a single sphere but. rallier wit.h the two-sphere chlster that is composed by the actual splhere
and by its image. Now. according to Wat.ernal,'•9 we define the size parameter, x, of a non-spherical object as the
size parameter of the siimallest. sphere that. may contain the object. itself. Accordingly, for the single sphere we have
z = 2.52 and even larger values for the other clusters that. we consider in this paper. If one also adds that the
refractive index is no = 3 the values of LA, that we quotczl above can in no way be considered too large.

Before discussing our results let. us recall that, the theory of the preceding sections has been set up on the assumption
that the z axis is orthogonal to the reflecting surface. This choice is hardly compulsory but, for cylindrically-symmetric
particles, it yields the automatic factorization of the matrix M as explained at the end of Subsection 2C. We also
stress that, according to the set. up of the theory, the polar angles of the direction of observation should be in
the range 0 < ps < 3600 and 0 < Vs < 900. We preferred, instead, to display our results with respect to the
frame of reference tdat. is sketched in Fig. 1: the reflecting surface coincides with the xz plane and the y axis is
thus orthogonal t.o the surface and directed towards the accessible halfspace. Accordingly, the scattering pattern is
reported for 0 < ps < 1800 and 0 < u9 < 180*. Since the scattering pattern depends on the direction of incidence, 0
the latter need to be specified. Now, according to eq. (6), once the matrix S is known, the generation of the scattering
pattern for several values of 0t and it is a fast. and low-cost. operation that produces a large amount of data, however.
Therefore we resolved to report. all the scattering patterns for a single direction of incidence only. This direction,
that in Fig. 1 is indicated by aii arrow, was chosen to form an angle of 450 with the normal to the surface and has
thus 01 = 90* and 'p = 2"250.

We also chose to not. refer the st.ate of polarization to a pair of basis vectors that. are parallel and orthogonal to •
the scattering plane, i. e. io the plane of k, and ks: we preferred inst.ead to project the polarization vector along
the pair of unit vectors i) and p that. are tangenit. to the lthe meridians aid to the parallels, respectively, of the big
sphere that is depicted in Fig. I. Or course, on account of this choice, the appearance of cross-polarization effects is
expected even when the scatterer is a single sphere.

The quantity that. we report in Figs. 2-4 as a function of i.s aiid ýPs is ,2 ,l for the single particles and
r2 (lq,)/Io for the dispersions, where, r is the distauice of observation, I() (li incident, intensity, Ily, is the observed
intensity, (4,1) is the orieltatioually-averaged ob,,erved int.eisity; the indices ui and i)' indicate the polarization of
the observed and of the inucideuit. field, respectively, and take on the symbolic values 09 and P to denote polarization

7 4



along the meridians (0t-polarizat ion) anid along tlie parallels (~ oaiainrespect~ively. It should also be noticed
that even when O's roachs its liniit iig values. ,)s = 00 and djS 1800, tilie anlgle ;"j is still well deifined as this
angle characterize% all observationl withI a well defined choicel of tIhv polariz/ationl, e. g. alonig the meridians. Thus,
the limiting curvtes: of ouir patlteriiý (OS5 = 00 and i9s = 180") describe tlie observation of the scattered beam that
propagates along the rellecting surface at. right. angles to (ihe p~lane of hiCidenCe with a polarization that depends
on vs: so, for the i2-polarized componient. of the scattered wave, iw'lie ýo = 90", E"~ is orthogonal to thle surface,
whereas when 'ps = 00 or s;, = 1800, E`C is parallel to tlie reflecting surface alid thus, as a direct consequence of the
boundary conditions, the scattered intceisit~y mitst, vanish; for thle V-polarized component of the scattered wave, when

ýp "or ýp = 1800, U-0~ is orthogonal 1.o the surface whereas, whlen v. = 900, E"'O is parallel t~o the reflecting
surface and thus the scat tered initensity must. ag-ain vanlish. Since, for ainy given polarization, (lhe four extreme vertices
of the pattern correspoind to tlie same physical situlatio., (lie sca ttered intensity mutst. have the same val ue at all
these extreme points;, a ftirther coinse(1uettee is that. v. gý 1,(11 =l 00,' = W0) = J,,('Os = 90" = 90").

All these featuires cant he seeniiin lFigs. 2-1 that. rejoi. (lie restilts of our cahciilatioils. Ini particular, Fig. 2 reports
the scattering patterii (.a) for a siiigle sphere oil tlie surlface. (h) for a dispersion of randomly oriented clusters of tio
mutually contacting spheresý on In On srface, (c ) for a dIispersioli of ra id~om ly orient~ed linear chains of four hemispheres
and (d) for a linear chain of four hem'iispheres along :tie z axis; lie flat. face of all the hemispheres lies onl the reflecting
surface. The incident field is s:-polarized and (lie V-polarized coulpotnet, of (lie scattered wave is considered. W~e first.
remark thatt the pattern for a single sphere in Fig. 2 (a) shows only a symmnetry of reflection in the plane of incidence.
Therefore, even for suich a cylindrically symmetric object. all thle dlirections of scattering must, be considered whenl
the incidence is not normial to thle reflecting planje. fin all thie four pat~terins in Fig. 2 we notice the presence of a0
strong scatt~ered1 beami that propagates along I-lie reflecting surface in the forward direction (19s = 900,V = 1800).
We also notice the two wviiigs in Ilthe pa~tterni from I(lie li near chain of fouir-hemi spheres in Fig. 2 (d). The comparison
wit~h the orient~at~ionally averaiged paltern in Fig. 2 (c) suggestsa that (lie observed wimiis are a restilt. of the p~art~icula~r
orientation of the scati rers'. Let. its now consider (ihe liiiit~ing curves at. ds =0' and ds = 180'. it. is quit(e evident.
that these cuirves.; are ahiniot flat for all the clusters hut are iii ii way flal. for the single sphere. This suggests that
the observation of (lie scattered lighlt. that, propagates aloiig(the reflecting suirface may yield useful information on
the shape of thle scat tei iii-g particles.

This is confirmied yIw the patt'erii in Fig. 3 1 hat. report our resuilts (a) for a single sphere and for thle assemblies
(b) of randomly oriented iwo-spheres cilusters. (C) t-wo-lieiiiispheres clusters aiid (d) fouir-hemis'pheres linear chains.
The incident wave is u)-polarized andc the jP-polarizod coniponent, of the scattered wave is considered, so that all thle
patterns descrilie cross-polarization effects. Let uts remark first that. the patterns in (a) and (b), that refer to a single
sphere and to the twvo-sphere clusters. p~resenit a couple of peaks for nion-limiting valuies of t9s and 9s: such peaks are
not present in the patterns in (c) and (d), that. refer t.o the twvo-hemnispheres and to the four-hemispheres clusters.
Furthermore, the pat~terns for all the clusters, either of spheres aiid of hemispheres reach their maximum valuie at
the four vertices (f)ts = t0 ., 1800 and ýps = 0", 1800): this is not. the case for the single sphere in (a). The differences
of the patterns of the sugespher,.( anid of (het( clutaters call be at-t~rihutaed oil oite hand (.o the cylindrical syimmletry
of the single sphere and oii the ot her htand 1.0 ( lie aniisot~ropy of thle clusters in spit~e of their random orientation. In
other words, the process of averaging does not. cancel ( lie effect~s that. are due to the anisotropy of thle scat~terers. Tile
patterns in Fig. 3 suggest. that. the effects of the anisotropy are still visible provided that. the observation is made
with the appropriat~e polarization.

In Fig. 4 we report. the patterns for the same objects that. we considered in Fig. 3; thle only difference is the choice
of the polarization, i. e. tile incident wave is vp-polarived and the u9-polarized component of the scattered wave is
considered. The patterns in (a) and (c), that refer to the single sphere and to thle two-hemispheres clusters, show
a strong similarity; suich a simiilarityv is also shown by thne patterns in (b) and (d) that refer to the two-spheres and
to the four-hemnispheres. respectively. Tihus, the general structure of the patterns seems t~o be related t~o the number
of the spheres that. compose thle actual scat~terers, provided thiat two hemispheres are counted as one sphere. Ini this
respect we recall that. all tlue scat. erers that. we investigate ini this paper have (lie same volume.

We do not report any result. for the case iii which bot~h (lie incident and (lhe scattered wave are considered t~o be
t9-polarized: these pat~terits 1o niot add In fact. aniy in formnation worthi of a separate coninment..
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4. Conclusions

The results that we reported in Ihe Section 3 suggest a number of considerations both on the applicability of the
small particle approxination to the problenm at hand and to the ability of our approach to yield useful information
for the interpretation of the experimental data.

In the present problem the range of applicability of the Rayleigh scattering approximation (RSA) is even more
restricted than in the case of the isolated particles. The use of the theory of the images, indeed, implies that one
has to deal with the compouind scatterer tha. is composed by the actual particle and by its mirror image. According
to the definition that. we quoted in tOle preceding section, t 9 the effective size parameter of such a compound object
is larger than the size paranieler of the act ual scatterer. or course, if the actual particle is not in contact with the
reflecting surface the efl',ctive size pa ram( th'r is bound to increase. Obvionsly, the RSA is in no way applicable to
the scatterers that. we consider in this paper both because the size parameter of each component sphere (and of each
hemisphere too) is not small and hb'canse the refractive index it.self is iot close to tinity. In this respect we recall
that we had to consider imIllipole fields ip) to /AI = 10, in contrast, t.o the RSA that. ainoiint.s to consider the dipole
field only, i. e. L.%, = I.

The approach that. we iised in this paper has bIeen designed j|ist. t.o deal wit.h the scat-tering properties ofanisotropic
particles without resort.ing to any approxilnal iolt except. for the truncation of the multipole expansions whose effect
can easily be checked, however. The usefulness of our approach stems from its genera't.y that, in turn, derives
from the transformation properties tinder rot altion of the spherical multipole fields and of the transition matrix. As
a result, we were able t.o calculate with a limited ýo.|piittat.ioal effort. the scattered intensity from assemblies of 0
randomly orienied anisot ropic scalt lerers oil the reflectinug surface.

The results of our calculations. in particular the 'esu|lts in Figs. 2 and 3, show that the scattering pattern of our
model anisotropic scatterers are remarkably differet. from those of the spherical particles. Therefore, provided this
behavior pertains also to more geieral anisotropic scatterers than the model scatterers that. we considered so far, a
polarization analysis of the grazing scattered intiensity could yield tiseful information on the possible anisotrcpy of
the particles on the surface,

Appe,.dix A: Scattering from a cluster of spheres

We consider a cluster of N spheres of radius b, and (possibly complex) refractive index n, whose centers lie at fR.0 ;
the cluster is assumed to be embedded into a homogeneous medium of refractive index n. The incident field, that we
assume to be the plane wave whose nimlipole expansioi is given by eq. (1), excites within each sphere the internal
field

E m t ( r . ) = - ( .( ) (P ) . .

pill

where r = r - 1R., By wr|iting Ihe scattered field as a stuperposition of the fields that are scattered by the single
spheres,

Esca " -"A(P),',r p )t.• (n k
a Ph., ail l m•:h ',)
0 plm

the unknown atplitudes A(I) call be calctlated by imposing the boundary conditions across the surface of each
one of the spheres in the cluster. In this respect we not.ice that, the scattered field is written in terms of multipole •
fields that are referred to different, origins whereas the incident, field is written in terms of mniltipoles that, are referred
to the origin of the frame of reference. Therefore, before the boundary conditions are applied we have to use an
appropriate addition theorem to refer all the nitiltipole fields to the same origin. 2 5 For the incident plane wave, e. g.,
this theorem yields

Elnc W(/Vp) l(")lt

IMa

where



- ~ ~ I '"(Al1)

The quantities 111"'s'"' 'rt' the lit't'leivillts of Ihe Iinit rix 01t111 perloiiiis the tratisfer of origin of' the midutipole lields
from Lthe uin iqute origIM ai at. 0 Iit)11 or coiirst, In tIhe p tesvnil Case Ih e tiniqu le origin Rif.0 coinic ides w ithi thle origin of
the reference frame, so I hat Ust = 0. We have

tam,1Pm' = s,, - 21 6(1 ~.1")] yCOI + I - 6pptt,1; -p1, m + it) x

where fl.,, = nl.. - n. aIItl 0

In the preceding equalioiis hei C '\art' IIt Clto2tbscli.Coidaii covdhcit'nts and the qitatitities Zx are the Gaunt. integrals'*.
that are defined as

ý2i+1)(21 
+ 1)

\Ae will also lied I tliii.rs- tia i if rfoi niF,, to ni ini orde(r to 941 itttlis, scat ttrtd Field ini tern is of iiiiitill iolt's fl'erredl

to an unique origiii. lTiis I iansft'i is effwetlc by a miatriix whose eleenwits, are ideiitical to tlin elements

"ptaove exept t I hat ill C ono ie ii ist. si bst. it. itt' .lth, for nI,,O.

Anyway, once the incrident. andI the scattere'd Field are! expressed ill termis of mitltipoles referred in turn to each one
of the sites of the cluster and the boundary conditions are. itnposed, one gets, for each p, a, I and in, four equations

among which the internal amplitudes C4.) can be eliminiated. As a result, the scattered amp~litudes A() turn out
to be the solution of the system of lintear non-homnogeneous equations

MA =-W, (AM)

where M4. = R-1 +h7 and( A and ), P~re flthe oie-coliiini vectors of the amp IlitLudes A(`) anid W( respectively. R.
is a diagonal matrix of teltement~s

with

R. (p) = 1+ I~tt, i, lt u~ ,', I+ ~~)~(kt u~k

where

If = ~ , ui,(.r) = .rj,(r), ivi(x) = .i/' 110.)
no

R.(,' and 2cointc idet w i th (ht le Nilie coel tic iot its bi an ait, respect.i vel y for t.he sca tter ing by a hiomogeneous sp here
of radius b. and refract~ivte indhex 0)" embetdttei In a hiouiiogt'tienuts Illedititt of refractive index rp. The last matrix that.
we need to define is N1 whost, vehetuts art'
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co,-I+ I -+ I .....

where G .K, R ) is still given hy ),q. (A2) except. for the siihstitutioi of h/l) to j• and l.,, = n., -

The formal solutiioi of eq. (A3) is

A = -M-W

i.e. 0

(1' pInt'.

This equation is rat her similar lo eq. (,1) htil w' arc lu'revu•iied to i(lei6ify AM withl, S by the fact t hatl hot l the A's
and the W's are tih' amplil mlds of imi.liloh', that are referred to diflerewt. origins. However, multliplicat-ion of the

precediiig equaltion hb "Ig lr) a.. i sllinimialtiol ov\er (1, 1, I a1mid in, after substitution for the W's of their expression •
in eq. (AI) yields

A -, 1 4.pu.' I Au'"'

and, ultimately, 0

-P, ') 
,i (q -I ,

c,,' qI. A qI l.'M
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Fig. 1. SketCh Ut' OWe iii diijA('li~iiiI h1al NN-4 ciiist. fol 111 dib b 1iN(I of (( ill I 4,11i11s. The. o.'ftlc' fing sn aC'oincide's widE Ii l xz s
axis and the y axis pouiilii lowaick I li, ii'm 's'jhllic IgaI-siiamct whoM' itIaclici il' idv.x is is= I- The. polar aiiglm's of I lic' dlirction01
of obs-ervation ranAV i' Ill"o. n'i4Vd 0"t <I #V <. 4lxii alnd 110 <. ~': S 181", IThe dic'c'iiol of jiloIic'd-1f, kic, thati is illdicated1

by time arrow, has lilt- polm angichs dS = 'If iid igt =- .2' I'li, allaligi('oc'iI of 1ime fonir-humc'isphiiec's liiiiar chimii whiom.

scattering p)atterni is rcbno 14-dIigo l'9M 2 (d) I tlowV is also shown

Fig. 2. Pat ton of Iliii scaiI vi'cd illit'glsil (a) lotitc single spiwic' ol (lie refeti':ing stirfac', (h) for a dispersioni of ran-

domly-orien ted two-zcplie'res cluisI er, (c) for iali di('periobt 01' raidoi l Ni h oii i h ii ted fa r- hem i~plieres li nealr ciha ins and (d ) for a
flonr-hernispheres linear ck a ii oriewe d as show ii inl Pika L Tll 'P v a ~vkngthI of thew iic'idenii wavye is A = 6'28.3 na And I-li

refractive index of all the scat terers is iio = 1.'lk radkis of 1kv% singly sphe're in (it) is b,, = 126.0 nin whereas the raditis hoth
of the spheres of tilhe I wo-sphiv es chinsi cr il ( h) a nit1 of Iltic lici' mispi drc's oh' Ili ti'fonti- kemisphleics linear rliaiim iii (c) a1(1 (d ) is
bh = 100111n. WeV ac-jmatl * \ r('1col fuil square' ((((lers) Ilie uIlnatlilos r1 I.,,/Io il (at) aiic (d) aind 2 I~ 5 )I inl (b) and, (c) ats
& function of I he angles of olicivaiol 0 11 ~al rc 1 is I lie clisi 0cc' of obhc'ai iIonl, to is It'll incide'nt o ciielsgty.' I1,, is ilie

observed intenisity and( (1,.-) lilt, cij~li laIVa~e~g'lolsc'r-t'ct ilI cilsil V.

Fig. 3. Plaiw(11iiif dic mali c' (iilvi'isilY fi) for ai single spi~tib'(. (hi) for a clispeisioti of ri (bioml ' ori('IiIec I wo'splc'rc's
clusters, (c) for it cispc'i~ioni of (la i(ildoo -oric'iii cd Iwo- ho'mlisjcicic's chisic',s and( (di) foll a dispe'isioni of ralndc)I(y-orieit~ecl
four-hcanispliercs iimc';r iiaiiis. Iii' ladii acil I to1 r('f(.iiI-4 vi' oictncs awc is ill Fig. '2: Itic' radiios of ilic e mi('isphecres of flic'
two-heniispkc'rc's cli~svr cqii.i (Ow I (1(1 iii ltc silighc' spihOc'v \VA' ri-'I~ (il (Illr 5 le iic'cs) 1-I'c/,.)/o inl (a) aml(( ~I.)
iii (b), (c') and (cit.

Fig. 4. Same as t-'ig. I c'xcvpI li al a1 I,/ nd ;ii 2 (,) It(ar collsidc'rc't.d
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